
Scripting ToDo List

The ToDo List application is fully scriptable – anything that you can do to a
document using the keyboard and mouse, can be done by a script using the
AppleEvents supported by ToDo List. Using AppleScript (which is available for
free on every Macintosh), you can create powerful custom solutions that combine
the features of ToDo List with other scriptable applications. For example, you
might already be using ToDo List as a convenient place to keep a list of files you
plan to download from Info-Mac. With a simple script, you could automatically
iterate through all of the items in the list and for each, use Anarchie (which is also
scriptable) to download the file to your machine.
 This chapter provides an overview of the elements in ToDo List that you can
control, and the commands that are available to control them. It assumes that you
already have some familiarity with AppleScript.

The ToDo List Elements
Scriptable applications are typically made up of a variety of elements that can be
specified (the 5th item of the document "Stuff") and a set of actions that can be
performed on those elements. ToDo List provides a hierarchy of element types
and a variety of ways to refer to them.
At the top of the hierarchy is a single application. The application has a number
of properties (that correspond to the current preferences) that can be addressed
directly:

autoOpen boolean    -- should ToDo List automatically open your last documents when launched

confirmDelete boolean    -- confirm deletes

play toggle sound boolean    -- play sound when toggling items

saveOnClose boolean    -- automatically save documents on close

saveInterval integer    -- save documents after this number of minutes (0 = don't auto-save)

returnKeyClicksOK boolean    -- <return> same as hitting OK in item dialog
You can retrieve or change any of these properties using AppleScript:
set areWeAutoOpening to the autoOpen of application "ToDo List"
set the autoOpen of application "ToDo List" to true

The application also contains some number of document elements (one for each
ToDo List document). You can refer to the documents by name or by index:

document "Things To Do" of application "ToDo List"
document 3 of application "ToDo List"

Each document has several properties that can be addressed directly:

name string    -- the title of the document

show calendar boolean    -- should the calendar be shown across the top of the document

use dates boolean    -- should all items have a due date associated with them

show overdue boolean    -- show how many days each item is overdue

carryforward unfinished boolean    -- should unfinished items be carried forward

date font string    -- font to use for displaying dates

date size integer    -- size of font for displaying dates

item font string    -- font for displaying items

item size integer    -- font size for displaying items

clipboard text only boolean    -- should copying to the clipboard copy only text

voice string    -- voice that should be used for speaking items

useSmallCalendarFont boolean -- if true, then a very small font is used for calendar

You can change these properties using AppleScript:

tell application "ToDo List"
      set the date font of document "Important Stuff" to "Times"
      set the show overdue of document 4 to false
end tell

Documents also contain some number of item elements. These elements can be
accessed by index:
item 5 of document 4

If the list is using due dates, then items can also be accessed via the date:
item 3 of date "1/13/96" of document 4
item 6 of date "June 1, 1996" of document "Stuff"

Each item has a number of properties that you can retrieve or set:

uniqueID integer [r/o]    -- a unique ID for the to do item

description string    -- the text of the to do item

dueDate string    -- the date the item should be done on

completed boolean    -- has the item been completed (true or false)

created string [r/o]    -- date and time that the item was created

priority integer    -- priority of the item (0 - 10, 0 = none, 1 = highest)

modified string [r/o]    -- date and time that the item was last modified

selected boolean    -- true if the item is currently selected
You can access these properties from AppleScript by just fully specifying the item
and property. For example:
tell application "ToDo List"
      -- Check off an item as finished
      set the completed of item 4 of document "Important Stuff" to true
      -- Change the due date of an item
      set the dueDate of item 2 of date "5/16/96" of
                                document 3 to "May 20, 1996"
end tell

You can create new elements using the make command.

AppleScript Commands
ToDo List supports the standard open, print, and quit AppleEvents, so you can
easily get it to launch and open a set of ToDo List documents. It also lets you
save and close documents as needed:

save: save the document to disk

save document

[in alias]    -- file to save the document in

close: close the document's window

close document    -- document to close

[saving yes/no/ask]    -- should any changes be saved

[saving in alias]    -- file to save the document in

For example:
tell application "ToDo List"
      open alias "My Harddisk:Lists:Stuff To Do"
      set the voice of document "Stuff To Do" to "Victoria"
      save document "Stuff To Do"
      close document "Stuff To Do"
end tell

ToDo List also supports several core AppleEvents that let you count, create, delete,
etc. the various elements that it defines:

count: count the number of elements in a class
count reference    -- the object whose elements are to be counted

each type class    -- the class of the elements to be counted.   
Result: integer    -- the number of elements in the given class
For example:
tell application "ToDo List"
      set cnt to count of documents
      set numItems to count of item of document 3
      set dayItems to count each item of date "5/6/96" of document "Stuff"
      set numDates to count each date of document 1
end tell

get: get data for a to do item
get reference    -- reference to the item to get
Result: anything    -- data for the requested to do item

set: set an item or property of an item to some value
set reference    -- the item or item property to change

to anything    -- new value for the item or property

make: make a new item

make

new type class

[at integer]

with properties record

within reference    -- the document to which the new item should be added

Result: integer    -- index of the new item
Makes a new item of the given type ("item" or "document"). Any unspecified
properties default to the same values as they would if the item were created
directly in ToDo List. For example:
tell application "ToDo List"
      -- Note: make new document doesn't support 'with properties'!
      set docNum to make new document
      set docName to get name of document docNum
      set the use dates of document docName to true
      make new item at 1 within document docName
              with properties description:"testing", priority: 1,
  dueDate:"Feb 1, 1996"
      make new item at 9999 within document docName
              with properties description:"testing", priority: 0,
  completed: true, dueDate:"Feb 1, 1996"
end tell

delete: delete an item from the document

delete reference    -- the item to delete
 For example:
tell application "ToDo List"
      delete item 1 of document "Stuff"
      delete item 1 of date "5/5/96" of document 2
end tell

move: move the referenced item to a new location, changing its due date and
priority if necessary

move reference    -- a reference to the item to be moved

to integer    -- index of the location the item should be moved to
Moves an item from one location to anotherwithin the same document. If
necessary, the priority or due date of the item will be modified to match the new
location. For example:

tell application "ToDo List"
      -- Move the first item to the end of the list
      move item 1 of document "Stuff" to 9999
      -- Swap the first and second items
      move item 1 of document "Stuff" to 2
end tell

ToDo List also supports several custom AppleEvents that let you control the
special features of the application:

SpeakItems: Read all of the unfinished items in the list
SpeakItems document    -- the ToDo List document to speak items from

SpeakTodaysItems: Read all of the unfinished items for today
SpeakTodaysItems document    -- the ToDo List document to read today's items from

synchronizeNewton: synchronize the given document with a Newton
synchronizeNewton document    -- the ToDo List document to synchronize to

[via serial-modem/serial-printer/modem/AppleTalk]

-- synchronize Newton using this connection (serial, AppleTalk, modem)

[using string]    -- option string for the connection

export: export the selected items (or all if none are selected) in the given ToDo List
document to a tab-delimited text file.
export document    -- the ToDo List document to export to a text file

[as text/HTML]    -- type of document to create (text or HTML).

[in alias]    -- the file to export the ToDo List document into

import: import items from a tab-delimited text file
import document    -- the ToDo List document to import the items into

[from alias]    -- the tab-delimited text file to import the items from

